JEE-Main-25-02-2021-Shift-1 (Memory Based)
 PHYSICS

Question: The distance of two points from the center of a loop on the axis is 0.05 cm and 0.20 cm and the ratio of the magnetic fields at these points is $8: 1$ respectively. Find the radius of the loop?

Options:

(a) 1 mm
(b) 0.1 mm
(c) 10 mm
(d) 0.01 mm

Answer: (a)

Solution:

Magnetic field due to circulation loop
$B \propto \frac{1}{\left(r^{2}+x^{2}\right)^{3 / 2}}$
$\Rightarrow \frac{B_{1}}{B_{2}}=\frac{\left(\left(x_{2}\right)^{2}+r^{2}\right)^{3 / 2}}{\left(\left(x_{1}\right)^{2}+r^{2}\right)^{3 / 2}}$
$\Rightarrow \frac{8}{1}=\frac{\left((.2)^{2}+r^{2}\right)^{3 / 2}}{\left((.05)^{2}+r^{2}\right)^{3 / 2}}$
Solving we get
$\Rightarrow \frac{4}{1}=\frac{\left((.2)^{2}+r^{2}\right)}{\left((.05)^{2}+r^{2}\right)}$
$\Rightarrow 4\left(\frac{25}{10000}\right)+4 r^{2}=\frac{4}{100}+r^{2}$
$\Rightarrow 3 r^{2}=\frac{4-1}{100}=\frac{3}{100}$
$\Rightarrow r=\frac{1}{10} \mathrm{~cm}$
$=1 \mathrm{~mm}$

Question: Proton, deuteron and alpha particle have same momentum. They are projected in the same magnetic field. Then choose the correct ratio of forces and their speeds.

Options:

(a) $F_{p}: F_{d}: F_{\alpha}=4: 2: 1 ; V_{p}: V_{d}: V_{\alpha}=2: 1: 1$
(b) $F_{p}: F_{d}: F_{\alpha}=2: 1: 1 ; V_{p}: V_{d}: V_{\alpha}=4: 2: 1$
(c) $F_{p}: F_{d}: F_{\alpha}=1: 2: 1 ; V_{p}: V_{d}: V_{\alpha}=1: 2: 1$
(d) $F_{p}: F_{d}: F_{\alpha}=1: 1: 1 ; V_{p}: V_{d}: V_{\alpha}=1: 1: 1$

Answer: (b)

Solution:

We have same momentum for proton, deuteron and alpha particle.
$F=q \nu B \sin \theta$
$F_{p}=e v_{p} B \sin \theta$
$F_{d}=e v_{d} B \sin \theta$
$F_{\alpha}=2 e v_{\alpha} B \sin \theta$
$F_{p}: F_{d}: F_{\alpha}=e v_{p} B \sin \theta: e v_{d} B \sin \theta: 2 e v_{\alpha} B \sin \theta$
Taking $\theta=90^{\circ} \& m_{p}=m, m_{d}=2 m, m_{\alpha}=4 m$
$V_{p}: V_{d}: V_{\alpha}=\frac{p}{m_{p}}: \frac{p}{m_{d}}: \frac{p}{m_{a}}$
$=\frac{1}{m_{p}}: \frac{1}{m_{d}}: \frac{1}{m_{\alpha}}=\frac{1}{1}: \frac{1}{2}: \frac{1}{4}$
$V_{p}: V_{d}: V_{\alpha}=4: 2: 1$
Now
$F_{p}: F_{d}: F_{\alpha}=V_{p}: V_{d}: 2 V_{\alpha}$
$=4: 2: 2$
$=2: 1: 1$.

Question: STATEMENT 1: A free rod when heated experiences no thermal stress.
STATEMENT 2: The rod when heated increases in length.

Options:

(a) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation of statement 1.
(b) Statement 1 is true, Statement 2 is true
(c) Statement 1 is true, Statement 2 is false
(d) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation of statement 1.
Answer: (d)

Solution:

Thermal stress generates, when rod is clamped but in statement 1 rod is free so it will not experience any thermal stress. Hence statement 1 is correct.
On heating length of the rod increases. So statement 2 is also correct.
But statement 2 doesn't totally explain statement 1.
So correct option is D.

Question: STATEMENT 1: Two planets have same escape velocity \& their masses are not equal.
STATEMENT 2: Ratio of mass to radius must be equal.

Options:

(a) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation of statement 1.
(b) Statement 1 is true, Statement 2 is true
(c) Statement 1 is true, Statement 2 is false
(d) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation of statement 1.
Answer: (a)

Solution:

Escape velocity on a planet is given by
$V_{e}=\sqrt{\frac{2 G M}{R}}$
Where M is mass of planet \& R is the radius of planet.
Now taking escape velocities both planet equal. $\left(V_{e}\right)_{P_{1}}=\left(V_{e}\right)_{P_{2}}$
$\sqrt{\frac{2 G M_{1}}{R_{1}}}=\sqrt{\frac{2 G M_{2}}{R_{2}}}=\sqrt{\frac{M_{1}}{R_{1}}}=\sqrt{\frac{M_{2}}{R_{2}}}$
$\frac{M_{1}}{R_{1}}=\frac{M_{2}}{R_{2}}$
Question: The time period of a 2 m long simple pendulum is 2 seconds. Find the value of ' g ' at that place?
Options:
(a) $2 \pi^{2}$
(b) π^{2}
(c) $4 \pi^{2}$
(d) $\frac{\pi^{2}}{2}$

Answer: (a)
Solution:

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{l}{g}} \\
& \Rightarrow 2=2 \pi \sqrt{\frac{2}{g}} \\
& \Rightarrow g=2 \pi^{2}
\end{aligned}
$$

Question: The pitch of a micrometer screw gauge is 1 mm and the circular scale has 100 divisions. When there is nothing between the jaws, the zero of the circular scale is 8 divisions below the main scale. When a wire is put between the jaws, the 1 st division of main scale is visible and 72 nd division of circular scale coincides with main scale. The radius of wire is?

(b)

Positive zero error
Options:
(a) 1.8 mm
(b) 0.9 mm
(c) 1.64 mm
(d) 0.82 mm

Answer: (d)
Solution:
$L C=\frac{1}{100}=0.01 \mathrm{~mm}$
Zero error $=+8$
Zero correction $=-8 \times$ LC
Main scale reading $=1 \mathrm{~mm}$
Circular scale reading $=72$
Diameter of wire $=1+(72-8) \times 0.01$
$=1.64 \mathrm{~mm}$
Radius $=\frac{1.64}{2}=0.82 \mathrm{~mm}$
Question: If a train engine crosses a signal with a velocity u and has constant acceleration and the last bogey of train crosses the signal with velocity v , then middle point of train crosses the signal with velocity?

Options:

(a) $\frac{v+u}{2}$
(b) $\sqrt{\frac{v^{2}+u^{2}}{2}}$
(c) $\sqrt{\frac{v^{2}-u^{2}}{2}}$
(d) $\frac{v-u}{2}$

Answer: (b)

Solution:

Let the length of the train be $=l$
Acc. to $3^{\text {rd }}$ equation of motion
$v^{2}-u^{2}=2 a s$
Where $s=l$
$v^{2}-u^{2}=2 a l$
$a=\frac{v^{2}-u^{2}}{2 l}$
When mid point, $l^{\prime}=\frac{l}{2}$
$v_{\text {last }}^{2}=u^{2}+2 a \frac{l}{2}$
$=u^{2}+a l$
$=u^{2}+\frac{v^{2}-u^{2}}{2 l} l$
$=\frac{2 u^{2}+v^{2}-u^{2}}{2}$
$v_{\text {last }}=\sqrt{\frac{u^{2}+v^{2}}{2}}$

Question: Two satellites A \& B revolve in $\mathrm{R}_{1}=600 \mathrm{~km} \& \mathrm{R}_{2}=1600 \mathrm{~km}$.
Find $\mathrm{T}_{2}: \mathrm{T}_{1}$.
Answer: 4.35

Solution:

From Kepler's third law
$T^{2} \propto R^{3}$
$\left(\frac{T_{1}}{T_{2}}\right)^{2}=\left(\frac{R_{1}}{R_{2}}\right)^{3}$
$\left(\frac{T_{2}}{T_{1}}\right)^{2}=\left(\frac{1600}{600}\right)^{3}$
$\frac{T_{2}}{T_{1}}=\left(\frac{16}{6}\right)^{3 / 2}=4.35$
Question: A diatomic gas is heated at constant pressure. Find the ratio $\mathrm{dU}: \mathrm{dQ}: \mathrm{dW}$ (where symbol has usual meaning)
(Given : $C_{p}=\frac{7}{2} R ; C_{v}=\frac{5}{2} R$)

Options:

(a) $5: 7: 1$
(b) $5: 7: 2$
(c) $2: 7: 5$
(d) $1: 1: 1$

Answer: (b)
Solution:
$d Q=n C_{p} d T$
$d U=n C_{v} d T$
$d W=n\left(C_{p}-C_{v}\right) d T$
$d U: d Q: d W$
$C_{u}: C_{p}:\left(C_{p}-C_{v}\right)$
$\frac{5}{2} R: \frac{7}{2} R: R$
5:7:2

Question: Match the following physical quantities with the correct dimensions?

$\mathbf{1}$	$\mathbf{2}$
h (planck's constant)	$\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~A}^{-1} \mathrm{~T}^{-3}\right]$
KE (kinetic energy)	$\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$
V (voltage)	$\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]$
P (momentum)	$\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$

Answer:

$\mathrm{h} \rightarrow\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$
$\mathrm{KE} \rightarrow\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$
$\mathrm{V} \rightarrow\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~A}^{-1} \mathrm{~T}^{-3}\right]$
$\mathrm{P} \rightarrow\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]$

Solution:

$[K E]=[W]=[F][x]=M L T^{-2} \times L=M L^{2} T^{-2}$
$[P]=[m][v]=M L T^{-1}$
$V=\frac{W}{q}=\frac{W}{I t} \Rightarrow[v]=\frac{[W]}{[I][t]}=\frac{M L^{2} T^{-2}}{A T}$
$=M L^{2} A^{-1} T^{-3}$
$[h]=M L^{2} T^{-1}$
Question: A uniform solid sphere of mass M and ratio R applies an attractive gravitational force F_{1} on a point mass m placed at a distance 3R from the center of sphere. Now a spherical mass of radius $\frac{R}{2}$ is removed from the sphere as shown. The force experienced by mass ' m ' now is F_{2}. Find $\frac{F_{1}}{F_{2}}$?

Options:

(a) $\frac{F_{1}}{F_{2}}=\frac{50}{41}$
(b) $\frac{F_{1}}{F_{2}}=\frac{41}{50}$
(c) $\frac{F_{1}}{F_{2}}=\frac{41}{42}$
(d) None of these

Answer: (a)

Solution:

Let the particle of mass m be placed on A. Then
$F_{1}=\frac{G M m}{(3 R)^{2}}=\frac{G M m}{9 R^{2}}$
After taking out $R / 2$ radius sphere, mass of the remaining sphere,
$=\left[\frac{4}{3} \pi R^{3}-\frac{4}{3} \pi\left(\frac{R}{2}\right)^{3}\right] d=\frac{4}{3} \pi R^{3}\left[\frac{7}{8}\right] d$
$=\frac{7}{8} M \quad\left(\mathrm{As} \quad M=\frac{4}{3} \pi R^{3} d\right)$
Now force on m placed at A,
$F_{2}=\frac{G M m}{9 R^{2}}-\frac{G M m}{\theta\left(\frac{5}{2} R\right)^{2}}=\frac{G M m}{R^{2}}\left[\frac{1}{9}-\frac{1}{50}\right]=\frac{41}{450} \frac{G M m}{R^{2}}$
$\therefore \frac{F_{1}}{F_{2}}=\frac{\frac{G M m}{9 R^{2}}}{\frac{41}{450} \frac{G M m}{R^{2}}}=\frac{50}{41}$
Question: A thermodynamics process obeys the law $\mathrm{p}=\mathrm{KV}^{3}$ when the temperature is raised from $100^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$. Find the work done on one mole of gas? $[\mathrm{R}=8.3]$
Answer: (415)

Solution:

$P=K v^{3}$
$n=1$
$W=\int P . d v$
$W=\int K \cdot v^{3} d v$
$W=\left.K \frac{v^{4}}{4}\right|_{v_{i}} ^{v_{f}}$
$W=\frac{k}{4}\left(v_{f}^{4}-v_{i}^{4}\right)$
We have
$P V=n R T$
$\frac{n R T}{v}=k v^{3}$
$R T=k v^{4}$
$k v_{f}^{4}=R \times(300+273)$
$k v_{i}^{4}=R(100+273)$
$k v_{f}^{4}-k v_{i}^{4}=R(300-100)$
$=200 \mathrm{R}$
$k v_{f}^{4}-k v_{i}^{4}=200 \times 8.3$
From (1) and (2)
$W=\frac{200 \times 8.3}{4}$
$=50 \times 8.3$
$W=415 \mathrm{~J}$

Question: Find the current in ideal battery of 5v between $X \& Y$ such that X is at higher potential.

Options:
(a) 0.5 A
(b) 0.43 A
(c) 0.57 A
(d) 0.1 A

Answer: (b)

Solution:

Diode connected in series with 10Ω would be forward biased.
As some potential would drop to overcome barrier potential of diode,
So current would be less than $0.5 \mathrm{~A}\left(=\frac{5 \mathrm{~V}}{10 \Omega}\right)$
And only option 0.43 A
Satisfies this condition.
Question: An alpha particle and a proton, are accelerated from rest by a potential difference of 200 V . Find the ratio of their de broglie wavelengths?

Options:

(a) $\frac{\lambda_{p}}{\lambda_{a}}=\frac{\sqrt{8}}{1}$
(b) $\frac{\lambda_{p}}{\lambda_{a}}=\frac{1}{\sqrt{8}}$
(c) $\frac{\lambda_{p}}{\lambda_{a}}=\frac{1}{2}$
(d) $\frac{\lambda_{p}}{\lambda_{a}}=\frac{2}{1}$

Answer: (a)

Solution:

$\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m E}}=\frac{h}{\sqrt{2 m q V}}$
$\lambda_{a} \propto \frac{1}{\sqrt{m_{\alpha} q_{\alpha}}}$
(V is same for both)
$\lambda_{p} \propto \frac{1}{\sqrt{m_{p} q_{p}}}$
$\frac{\lambda_{p}}{\lambda_{\alpha}}=\frac{\sqrt{m_{\alpha} q_{\alpha}}}{\sqrt{m_{p} q_{p}}}=\frac{\sqrt{4 m_{p} \times 2 q_{p}}}{\sqrt{m_{p} q_{p}}}=\frac{\sqrt{8}}{1}$
Question: Two radioactive samples X and Y have number of nuclei N_{10} and N_{20} respectively. The half life of X is half of that of Y . It is observed that after the time equal to three half life of Y, the number of nuclei of X is equal to that of Y. Find the ratio of initial number of nuclei of X ?

Options:

(a) $\frac{N_{20}}{N_{10}}=\frac{1}{8}$
(b) $\frac{N_{20}}{N_{10}}=8$
(c) $\frac{N_{20}}{N_{10}}=\frac{1}{2}$
(d) $\frac{N_{20}}{N_{10}}=2$

Answer: (a)

Solution:

$N=N_{0}\left(\frac{1}{2}\right)^{n}$
$N_{X}=N_{10}\left(\frac{1}{2}\right)^{3 \times 2}$
$N_{Y}=N_{20}\left(\frac{1}{2}\right)^{3}$
According to question
$N_{X}=N_{Y}$
$N_{10} \cdot\left(\frac{1}{2}\right)^{6}=N_{20}\left(\frac{1}{2}\right)^{3}$
$\Rightarrow \frac{N_{20}}{N_{10}}=\frac{(1 / 2)^{6}}{(1 / 2)^{3}}=\frac{1}{8}$
Question: Two coherent sources have intensity in the ratio of 2 x . Find the value of
$\left[\frac{I_{\text {max }}-I_{\text {min }}}{I_{\text {max }}+I_{\text {min }}}\right]$

Options:

(a) $\frac{2 \sqrt{x}}{x+1}$
(b) $\frac{2 \sqrt{2 x}}{x+1}$
(c) $\frac{2 \sqrt{2 x}}{2 x+1}$
(d) $2 x$

Answer: (c)
Solution:
$\frac{I_{1}}{I_{2}}=2 x$
$I_{1}=2 x I_{2}$
$I_{\text {max }}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}}$
$I_{\text {min }}=I_{1}+I_{2}-2 \sqrt{I_{1} I_{2}}$
$I_{\text {max }}-I_{\text {min }}=4 \sqrt{I_{1} I_{2}}$
$I_{\text {max }}+I_{\text {min }}=2\left(I_{1}+I_{2}\right)$
$\left(\frac{I_{\text {max }}-I_{\text {min }}}{I_{\text {max }}+I_{\text {min }}}\right)=\frac{2 \sqrt{I_{1} I_{2}}}{I_{1}+I_{2}}$
$=\frac{2 \sqrt{2 x I_{2}^{2}}}{2 x I_{2}+I_{2}}$
$=\frac{2 \sqrt{2 x}}{2 x+1}$
Question: 512 drops each of potential 2 V are coalesced to form a big drop. The potential of the big drop (in V).
Answer: (128)

Solution:

For small drop

$$
\begin{equation*}
\frac{K q}{r}=2 \tag{i}
\end{equation*}
$$

When 512 drops coalesced
$\left(\frac{4}{3} \pi R^{3}\right)=512\left(\frac{4}{3} \pi r^{3}\right)$
$\Rightarrow R=8 r$
Potential of large drop
$\Rightarrow \frac{K Q}{R}=\frac{K 512 q}{8 r}=64\left(\frac{K q}{r}\right)$
Using eq ${ }^{\mathrm{n}}$ (i)
$\Rightarrow 64(2)=128 \underline{V}$
Question: A circular coil of wire consisting of 100 turns each of radius 8.0 cm carries a current of 0.40 A . The magnitude of B at the centre of the coil is $\mathrm{n} \times 10^{-5} \mathrm{~T}$, where n is closest to the integer:
Answer: (31)

Solution:

$B_{C}=\frac{\mu_{0} \text { In }}{2 r}=\frac{4 \pi \times 10^{-7} \times 0.4 \times 100}{2 \times 8 \times 10^{-2}}$
$=0.31 \times 10^{-3}$
$=31 \times 10^{-5} \mathrm{~T}$

JEE-Main-25-02-2021-Shift-1 (Memory Based) CHEMISTRY

Question:

Options:
(a)

(b)

(c)

(d)

Answer: (a)
Solution:

dehydrogenation

Question:

$$
\mathrm{HC} \equiv \mathrm{CH} \xrightarrow[\Delta]{\mathrm{Fe}}(\mathrm{~A}) \xrightarrow[\mathrm{AlCl}_{3}]{\mathrm{CO}, \mathrm{HCl}}(\mathrm{~B})
$$

Number of sp^{2} hybridised carbon in B
Options:
(a) 7
(b) 5
(c) 6
(d) 1

Answer: (a)
Solution:

\{Total $7 \mathrm{sp}^{2}$ carbon $\}$

Question: Which will liberate CO_{2} with reaction with NaHCO_{3}

(a)

(b)

(c)

Options:
(a) Only (b)
(b) (a) only
(c) (c) and (a)
(d) (b) and (c)

Answer: (d)
Solution: NaHCO_{3} being basic in nature, reacts with benzoic acid (b) and liberates CO_{2}.
Picric acid (c) contains $3 \mathrm{NO}_{2}$ groups which are electron withdrawing and increase the acidity of phenolic hydrogen whereas (a) contains 3 amine groups which are electron releasing and decrease the acidity of phenolic hydrogen.
Hence, (b) and (c) liberates CO_{2} on reaction with NaHCO_{3} but (a) does not.

Question: Which of the following is correct?
Options:
(a) Buna-S is a thermosetting and synthetic polymer
(b) Buna- N is a natural polymer
(c) Neoprene is used to manufacture buckets
(d) Nascent oxygen is used in the formation of Buna-S

Answer: (d)

Solution:

Buna - S is a synthetic polymer and a thermoplastic.
Buna -N is a synthetic polymer.
Neoprene is used to manufacture conveyor belts, gaskets and hoses.

Buna -S is formed in presence of peroxide as catalyst (nascent oxygen.)

Question: In the Freundlich isotherm at moderate pressure x / m is directly proportional to p^{x}, where x is:

Options:

(a) $1 / n$
(b) 0
(c) 1
(d) None of these

Answer: (a)
Solution: $\frac{x}{m}=\left(K P^{\frac{1}{n}}\right)$
Freundlich formula

Question: Which of the following have same number of electrons in outermost shell? Options:
(a) Cr^{3+} and Fe^{+}
(b) Sc^{+}and V^{+}
(c) Mn^{2+} and Cr^{+}
(d) Sc^{+}and Ti^{+}

Answer: (c)
Solution: Both have $3 \mathrm{~d}^{5}$ electronic configuration.

Question: Which of the following linkage is present in Lactose?

Options:

(a) $\mathrm{C}_{1}-\mathrm{C}_{4}, \beta$-D galactose and β-D glucose
(b) $\mathrm{C}_{1}-\mathrm{C}_{2}, \beta$-D galactose and β-D glucose
(c) $\mathrm{C}_{1}-\mathrm{C}_{2}, \beta-\mathrm{D}$ glucose and β-D galactose
(d) $\mathrm{C}_{1}-\mathrm{C}_{3}, \beta$-D glucose and β-D galactose

Answer: (a)
Solution: Lactose: It is more commonly known as milk sugar since this disaccharide is found in milk. It is composed of $\beta-\mathrm{D}$ galactose and β-D glucose. The linkage between C 1 of galactose and C 4 of glucose. Free aldehydes group may be produced at $\mathrm{C}-1$ of glucose unit, hence it is also a reducing sugar.

Question: Which of the following does not exist as per MOT?

Options:

(a) Be_{2}
(b) He_{2}
(c) $\mathrm{He}_{2}{ }^{+}$
(d) None of these

Answer: (b)
Solution:
$\mathrm{He}_{2}=\sigma_{1 s^{2}} \sigma_{1 s^{2}}$
B. $\mathrm{O}=\frac{1}{2}\left[\mathrm{e}_{\text {Вмо }}^{-}-\mathrm{e}_{\text {Авмо }}^{-}\right]$
B. $\mathrm{O}=\frac{1}{2}[2-2]=0$

According to MOT, If any molecule has zero bond order then it does not exist.

Question: Ellingham diagram is the plot between?

Options:

(a) $\Delta \mathrm{G}$ vs T
(b) $\Delta \mathrm{H}$ vs T
(c) $\Delta \mathrm{S}$ vs T
(d) None of these

Answer: (a)
Solution: Ellingham diagram shows a graph between Gibbs energy charge (ΔG) and temperature.
Question: $\mathrm{CH}_{3} \mathrm{CN} \xrightarrow[\text { (3) } \mathrm{Pd} / \mathrm{BaSO}_{4}]{\substack{(1) \mathrm{H}_{3} \mathrm{O}^{+} \\ \text {(2) } \mathrm{SOCl}_{2}}}$

Options:

(a) $\mathrm{CH}_{3} \mathrm{COOH}$
(b) $\mathrm{CH}_{3} \mathrm{COCl}$
(c) $\mathrm{CH}_{3} \mathrm{CHO}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

Answer: (c)

Solution:

Question:

Find ' A ' and ' B '

Options:

(a)

(b)

(c)

(d)

Answer: (a)

Solution:

Question: Which of the following is the correct radial probability distribution curve for 3 s orbital? Options:
(a)

(b)

(c)

(d) None of these

Answer: (b)

Solution:

Radial node $=n-\ell-1$
= 3-0-1
$=2$

Question: Hybridization of $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$ and magnetic nature of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

Options:

(a) $d^{2} s p^{3}$ and diamagnetic
(b) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ and diamagnetic
(c) $\mathrm{d}^{2} \mathrm{sp}^{3}$ and paramagnetic
(d) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ and paramagnetic

Answer: (c)

Solution:

$\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$
$C N^{-}$is a strong field ligand and Mn is in +2 oxidation state ($3 d^{5}$ configuration)
Hence, it forms inner sphere orbital complex and $\left[M n(C N)_{6}\right]^{4-}$ is $d^{2} s p^{3}$ hybridised
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \mathrm{Fe}$ is in $3 d^{5}$ configuration.
$C N^{-}$is strong filed ligand

$\mathrm{Fe}^{3+}=>$| 1 | 11 | 1 | | |
| :--- | :--- | :--- | :--- | :--- |

$\mu=\sqrt{n(n+2)}=\sqrt{1(1+2)}=\sqrt{3}$
$=1.73 \mathrm{BM}$

Question: Find the boiling point of the aqueous solution of $\mathrm{A}_{2} \mathrm{~B}_{3}$ considering 60% dissociation. (given: $\mathrm{K}_{\mathrm{b}}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.52$. Molality $=1$ molal
Answer: 101.768

Solution:

$\mathrm{A}_{2} \mathrm{~B}_{3} \rightleftharpoons 2 \mathrm{~A}^{3+}+3 \mathrm{~B}^{2-}$
$\mathrm{i}=1-\alpha+\mathrm{n} \alpha$ (for dissociation)
$=1-0.6+5 \times 0.6$
$=3.4$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{K}_{\mathrm{b}} \times \mathrm{m}$

$$
\begin{aligned}
& =3.4 \times 0.52 \times 1 \\
& =1.768
\end{aligned}
$$

Boiling point $=101.768^{\circ} \mathrm{C}$

Question: Statement 1: CeO_{2} is used for the oxidation of aldehyde.
Statement 2: Aqueous solution of EuSO_{4} acts as strong reducing agent.

Options:

(a) Both are true
(b) S_{1} is true and S_{2} is false
(c) S_{1} is false and S_{2} is true
(d) Both S_{1} and S_{2} are false

Answer: (a)
Solution: CeO_{2} is mild oxidizing agent and used in oxidation of aldehyde into corresponding acid.
Eu is a lanthanide having electronic configuration $[X e] 4 f^{7} 5 d^{1} 6 s^{2}$. Therefore, Eu^{+2} oxidises readily to give more stable Eu^{+3} and acts as a strong reducing agent.

Question: Correct statement about $\mathrm{B}_{2} \mathrm{H}_{6}$ Options:
(a) BH_{3} is Lewis acid
(b) Terminal H has more p character than bridge H
(c) All B-H bond are of same length
(d) Bond angle $\mathrm{B}-\mathrm{H}-\mathrm{B}$ is 120°

Answer: (a)
Solution: BH_{3} is Lewis acid because boron has 6 valence electron
\therefore It can accept 2 electrons to complete its octet.

JEE-Main-25-02-2021-Shift-1 (Memory Based)
 MATHEMATICS

Question: If $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ are orthogonal then relation between a, b, c, d is:
Options:
(a) $a-b=c-d$
(b) $a b=\frac{b+d}{c+d}$
(c)
(d)

Answer: (a)

Solution:

Let common point of curves be (p, q).
For $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$
Differentiating, we get
$\frac{2 x}{a}+\frac{2 y}{b} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=-\frac{b x}{a y}$
So, slope for first curve at (p, q)
$\left(=m_{1}\right)=-\frac{b p}{a q}$
Similarly slope for second curve at (p, q)
$\left(=m_{2}\right)=-\frac{d p}{c q}$
Now, as both curves are orthogonal
$\Rightarrow m_{1} m_{2}=-1$
$\frac{b d}{a c}\left(\frac{p^{2}}{q^{2}}\right)=-1$
Now, (p, q) lies on both the curves
So, $\frac{p^{2}}{a}+\frac{q^{2}}{b}=1$ and
$\frac{p^{2}}{c}+\frac{q^{2}}{a}=1$
Subtracting these
$p^{2}\left(\frac{1}{a}-\frac{1}{c}\right)+q^{2}\left(\frac{1}{b}-\frac{1}{d}\right)=0$
$\Rightarrow \frac{p^{2}}{q^{2}}=\frac{\left(\frac{1}{d}-\frac{1}{b}\right)}{\left(\frac{1}{a}-\frac{1}{c}\right)}=\frac{(b-d) a c}{(c-a) b d}$
Putting this value in (1), we get

$$
\begin{aligned}
& \frac{b d}{a c} \cdot \frac{(b-d) a c}{(c-a) b d}=-1 \\
& \Rightarrow b-d=a-c \\
& \Rightarrow a-b=c-d
\end{aligned}
$$

Question: The image of the $\operatorname{point}(3,5)$ in line $x-y+1=0$, lies on Options:
(a) $(x, 2)^{2}+(y-4)^{2}=8$
(b) $(x+4)^{2}+(y-6)^{2}=16$
(c)
(d)

Answer: ()

Solution:

Image of point $(3,5)$ in $x-y+1=0$ is
$\frac{x-3}{1}=\frac{y-5}{-1}=\frac{-2(3-5+1)}{1^{2}+1^{2}}$
$\Rightarrow \frac{x-3}{1}=\frac{y-5}{-1}=1$
$\Rightarrow x=4, y=4$
From the given options

Question: $\lim _{x \rightarrow \infty}\left[1+\frac{\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots \frac{1}{n}}{n^{2}}\right]$

Options:

(a) 0
(b) $\frac{1}{e}$
(c) $\frac{1}{2}$
(d) 1

Answer: (d)
Solution:
Given, $\lim _{n \rightarrow \infty}\left[1+\frac{\frac{1}{2}+\frac{1}{2}+\ldots+\frac{1}{n}}{n^{2}}\right]^{n}$
Its 1^{∞} form
$\Rightarrow e^{\lim _{n \rightarrow \infty} n\left(\frac{\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}}{n^{2}}\right)}$
$\Rightarrow e^{\lim _{n \rightarrow \infty}\left(\frac{1}{n}+\frac{1}{2 n}+\frac{1}{3 n}+\ldots .+\frac{1}{n^{2}}\right)}$
$\Rightarrow e^{0}=1$

Question: $A \rightarrow(B \rightarrow A)$ equal to

Options:

(a) $A \rightarrow(A \vee B)$
(b) $A \rightarrow(A \wedge B)$
(c) $A \rightarrow(A \rightarrow B)$
(d) $A \rightarrow(A \leftrightarrow B)$

Answer: (a)

Solution:

$A \rightarrow(B \rightarrow A)$
$\equiv A \rightarrow(\sim B \vee A)$
$\equiv \sim A \vee(\sim B \vee A)$
$\equiv \sim B \vee(\sim A \vee A)$ (Associative law)
$\equiv \sim B \vee t$
$\equiv t$
So, given statement is a tautology

Now option (A)

$$
\begin{aligned}
& A \rightarrow(A \vee B) \\
& \equiv \sim A \vee(A \vee B) \\
& \equiv(\sim A \vee A) \vee B \\
& =t \vee B \\
& \equiv t
\end{aligned}
$$

So, option (A) is correct

Question: $\frac{d y}{d x}=\frac{x^{2}-4 x+8+y}{x-1}$, if curve passes through origin, then it also passes through Options:
(a) $(5,5)$
(b) $(4,5)$
(c) $(5,4)$
(d) $(4,4)$

Answer: (a)

Solution:

$\frac{d y}{d x}=\frac{x^{2}-4 x+8+y}{x-2}$
$\frac{d y}{d x}=\frac{\left(x^{2}-4 x+4\right)(y+4)}{(x-2)}$
$\frac{d y}{d x}=\frac{y+4}{(x-2)}+(x-2)$
Let $x-2=X$
$y+4=Y$
$\frac{d Y}{d X}=\frac{Y}{X}+X$
$\frac{d Y}{d X}-\frac{Y}{X}=X$
Integrating factor $=e^{\int-\frac{1}{x} d x}$

$$
\begin{aligned}
& =e^{-\log x} \\
& =\frac{1}{X}
\end{aligned}
$$

$\Rightarrow \frac{Y}{X}=\int 1 d x$
$\Rightarrow Y=X^{2}+c X$
$\Rightarrow y+4=(x-2)^{2}+c(x-2)$
It passes through origin (0,0), so
$4=4-2 c \Rightarrow c=0$
$\Rightarrow(y+4)=(x-2)^{2}$
$(5,5)$ satisfies it

Question: The coefficients a, b, c of quadratic equation $a x^{2}+b x+c=0$ are obtained by throwing a dice thrice. The probability that it has equal roots is

Options:

(a) $\frac{1}{36}$
(b) $\frac{1}{72}$
(c) $\frac{1}{54}$
(d) $\frac{5}{216}$

Answer: (d)

Solution:

For Equal roots D $=0$
$\Rightarrow b^{2}=4 a c$
For $b=1 \Rightarrow a c=\frac{1}{4} \Rightarrow$ Not possible
For $b=2 \Rightarrow a c=1 \Rightarrow a=1, c=1$
For $b=3 \Rightarrow a c=\frac{9}{4} \Rightarrow$ Not possible
For $b=4 \Rightarrow a c=4 \Rightarrow(1,4),(4,1),(2,2)$
For $b=5 \Rightarrow a c=\frac{25}{4} \Rightarrow$ Not possible
For $b=6 \Rightarrow a c=9 \Rightarrow(3,3)$
So, cases with equal roots are
$(1,2,1),(1,4,4),(4,4,1),(2,4,2),(3,6,3)$
Total number of ways $=6 \times 6 \times 6=216$

Required probability $=\frac{5}{216}$

Question: $\int_{-1}^{1} x^{2} e^{\left[x^{3}\right]} d x$

Options:

(a) $\frac{1}{3 e}$
(b) $\frac{e+1}{3 e}$
(c) $\frac{3 e+1}{3 e}$
(d) $\frac{1}{e}$

Answer: (b)

Solution:

$\left[x^{3}\right]=0$ for $0 \leq x<1$
And $\left[x^{3}\right]=-1$ for $-1<x<0$
So, $\int_{-1}^{1} x^{2} e^{\left[x^{3}\right]} d x=\int_{-1}^{0} x^{2} e^{\left[x^{3}\right]} d x+\int_{0}^{1} x^{2} e^{\left[x^{3}\right]} d x$
$=\int_{-1}^{0} x^{2} \cdot e^{-1} d x+\int_{0}^{1} x^{2} d x$
$=\frac{1}{e} \times\left.\frac{x^{3}}{3}\right|_{-1} ^{0}+\left.\frac{x^{3}}{3}\right|_{0} ^{1}$
$=\frac{1}{3 e}(0-(-1))+\frac{1}{3}(1-0)$
$=\frac{1}{3 e}+\frac{1}{3}$

Question: If $x=\sum_{n=0}^{\infty} \cos ^{2 n} \theta, y=\sum_{n=0}^{\infty} \sin ^{2 n} \phi$ and, $z=\sum_{n=0}^{\infty} \cos ^{2 n} \theta \sin ^{2 n} \phi$. Then which of the following is true
Options:
(a) $x y+z=(x+y) z$
(b) $x y-z=(x+y) z$
(c) $x y z=4$
(d) $x y+y z+z x=z$

Answer: (a)

Solution:

$x=1+\cos ^{2} \theta+\cos ^{4} \theta+\ldots \infty$
$x=\frac{1}{1-\cos ^{2} 1}=\operatorname{cosec}^{2} \theta$
$y=1+\sin ^{2} \phi+\sin ^{4} \phi+\ldots \infty$
$y=\frac{1}{1-\sin ^{2} \phi}=\sec ^{2} \phi$
$z=1+\cos ^{2} \theta \sin ^{2} \phi+\cos ^{4} \theta \sin ^{4} \phi+\ldots \infty$
$z=\frac{1}{1-\cos ^{2} \theta \sin ^{2} \phi}$
From (1), (ii) and (iii)
$z=\frac{1}{1-\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)}=\frac{x y}{x y-(x-1)(y-1)}$
$x z+y z-z=x y$
$=x y+z=(x+y) z$

Question: The polynomial $f(x)=x^{3}-b x^{2}+c x-4$ satisfies the conditions of Rolle's theorem for $x \in[1,2], f\left(\frac{4}{3}\right)$ the order pair (b, c) is
Options:
(a) $(5,8)$
(b) $(-5,8)$
(c) $(-5,-8)$
(d) $(5,-8)$

Answer: (a)

Solution:

Since, $f(x)=x^{3}-b x^{2}+c x-4$ satisfies Rolle's Theorem condition
$\therefore f(1)=f(2)=0$
$\Rightarrow 1-b+c-4=0 \Rightarrow c-b=3$
$\Rightarrow 8-4 b+26-4=0 \Rightarrow c-2 b=-2$
On solving above equation (i) and (2)
$b=5, c=8$

Question: $\int \frac{\sin \theta \cdot \sin 2 \theta\left(\sin ^{6} \alpha+\sin ^{4} \theta+\sin ^{2} \theta\right) \sqrt{2 \sin ^{4} \theta+3 \sin ^{2} \theta+6}}{1-\cos 2 \theta}$
Answer: $\frac{1}{18}\left(2 \sin ^{6} \theta+3 \sin ^{4} \theta+6 \sin ^{2} \theta\right)^{\frac{3}{2}}+C$

Solution:

Given, $I=\int \frac{\sin \theta \cdot 2 \sin \theta \cdot \cos \theta \cdot \sin ^{2} \theta\left(\sin ^{4} \theta+\sin ^{2} \theta+1\right) \sqrt{2 \sin ^{4} \theta+3 \sin ^{2} \theta+6}}{2 \sin ^{2} \theta} d x$
$I=\int \sin \theta \cdot \cos \theta\left(\sin ^{4} \theta+\sin ^{2} \theta+1\right) \sqrt{2 \sin ^{6} \theta+3 \sin ^{4} \theta+6 \sin ^{2} \theta} d x$
Let $2 \sin ^{6} \theta+3 \sin ^{4} \theta+6 \sin ^{2} \theta=t$
$\Rightarrow 12 \sin \theta \cdot \cos \theta\left(\sin ^{4} \theta+\sin ^{2} \theta+1\right) d x=d t$
$\therefore I=\int \sqrt{t} \cdot \frac{d t}{12}$
$=\frac{1}{12}\left(\frac{t^{3 / 2}}{\frac{3}{2}}\right)+C=\frac{1}{18}\left(2 \sin ^{6} \theta+3 \sin ^{4} \theta+6 \sin ^{2} \theta\right)+C$

Question: $x y z=24, x, y, z \in N$. Find number of ordered pairs (x, y, z)

Answer: 30.00

Solution:

$x y z=24$
$x y z=2^{3} .3$
Let $x=2^{a_{1}} 3^{b_{1}}$
$y=2^{a_{2}} 3^{b_{2}}$
$z=2^{a_{3}} 3^{b_{3}}$
So, $2^{a_{1}+a_{2}+a_{3}} .3^{b_{1}+b_{2}+b_{3}}=2^{3} .3^{1}$
So, $a_{1}+a_{2}+a_{3}=3$
$b_{1}+b_{2}+b_{3}=1$
Number of solutions of (1) are ${ }^{5} C_{2}=10$
Number of solutions of (2) are ${ }^{3} C_{2}=10$
Total number $=10 \times 3=30$

Question: Calculate the locus of centre of circle which touches externally $x^{2}+y^{2}-6 x-6 y+14=0$ and also touches the y -axis
Answer: 0.00

Solution:

Given circle has centre at $(3,3)$ and radius is 2 units

So $P Q=2+h$
$P Q^{2}=(2+h)^{2}$
$(h-3)^{2}+(k-3)^{2}=(2+h)^{2}$
$h^{2}+9-6 h+k^{2}+9-6 k=h^{2}+4+4+h$
$k^{2}-6 k-10 h+14=0$
So, locus is $y^{2}-6 y-10 x+14=0$

Question: The number of points where $f(x)=|2 x+1|-3|x+2|+\left|x^{2}+x-2\right|, x \in R$ is not differentiable.
Answer: 2.00

Solution:

As $f(x)$ involves sum and difference of mod functions with polynomials inside them
So, $f(x)$ is a continuous function and may or may not be differentiable ay points where mod values become 0 .

Such points are $x=-\frac{1}{2}, 1,-2$
For $x<-2$,
$f(x)=-2 x-1+3 x+6+x^{2}+x-2$
$=x^{2}+2 x+3$
For $-2<x<-\frac{1}{2}$
$f(x)=-2 x-1-3 x-6-x^{2}-x+2$
$=-x^{2}-6 x-5$
For $-\frac{1}{2}<x<1$
$f(x)=2 x+1-3 x-6-x^{2}-x+2$
$=-x^{2}-2 x-3$
For $x>1$
$f(x)=2 x+1-3 x-6+x^{2}+x-2$
$=x^{2}-7$
$f^{\prime}(x)=\left\{\begin{array}{ccc}2 x+2 & , & x<-2 \\ -2 x-6 & , & -2<x<-\frac{1}{2} \\ -2 x-2 & , & -\frac{1}{2}<x<1 \\ 2 x, & x>1\end{array}\right.$
Now, $f^{\prime}\left(-\frac{1^{-}}{2}\right)=-5, f^{\prime}\left(-\frac{1}{2}^{+}\right)=-1 \Rightarrow$ Not differentiable at $x=-\frac{1}{2}$
$f^{\prime}\left(-2^{-}\right)=-2, f^{\prime}\left(-2^{+}\right)=-2 \Rightarrow$ Differentiable at $x=-2$
$f^{\prime}\left(1^{-}\right)=-4, f^{\prime}\left(1^{+}\right)=2 \Rightarrow$ Not differentiable at $x=1$
So, 2 points where $f(x)$ is not differentiable

Question: Sine and cosine graph intersect each other, a number of times. If the area of one cross section is A. Then $A^{4}=$?
Answer: 64.00

Solution:

Required area $=\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}(\sin x-\cos x) d x$
$=-\left.\cos \right|_{\frac{\pi}{4}} ^{\frac{5 \pi}{4}}-\left.\sin x\right|_{\frac{\pi}{4}} ^{\frac{5 \pi}{4}}$
$=\left(-\left(-\frac{1}{\sqrt{2}}\right)-\left(-\frac{1}{\sqrt{2}}\right)\right)-\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)$
$=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=2 \sqrt{2}$
So, $A^{4}=(2 \sqrt{2})^{4}=64$

Question: $f(x)$ is a polynomial of degree 6 with coefficient of x^{6} equal to 1 . If extreme values occur at $x=1$ and $x=-1, \lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}=1$, then $5 f(2)=$

Answer: 144.00

Solution:

Let $f(x)=x^{6}+a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f$
$\because \lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}=1$
$\therefore \lim _{x \rightarrow 0} \frac{x^{6}+a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f}{x^{3}}=1$
$\therefore c=1, d=e=f=0$
$\therefore f(x)=x^{6}+a x^{5}+b x^{4}+x^{3}$
So, $f^{\prime}(x)=6 x^{5}+5 a x^{4}+4 b x^{3}+3 x^{2}$
$\because f^{\prime}(1)=f^{\prime}(-1)=0$
$\therefore 6+5 a+4 b+3=0$
$-6+5 a-4 b+3=0$
On adding (1) \& (2)
$a=-\frac{3}{5}$
On subtracting (1) \& (2)
$b=-\frac{3}{2}$
$\therefore f(x)=x^{6}-\frac{3}{5} x^{5}-\frac{3}{2} x^{4}+x^{3}$
$\therefore 5 f(2)=5\left[64-\frac{96}{5}-24+8\right]=144$

Question: If $A=\left[\begin{array}{cc}0 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 0\end{array}\right],(I+A)(I-A)^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$, find $13\left(a^{2}+b^{2}\right)$

Answer: 13.00

Solution:

$A=\left[\begin{array}{cc}0 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 0\end{array}\right]$
$I+A=\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]$
$I-A=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$
$(1-A)^{-1}=\frac{1}{\left(1+\tan ^{2} \frac{\theta}{2}\right)}\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]$
So, $(I+A)(I-A)^{-1}$
$=\frac{1}{\left(\sec ^{2} \frac{\theta}{2}\right)}\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]$
$=\frac{1}{\left(\sec ^{2} \frac{\theta}{2}\right)}\left[\begin{array}{cc}\sec ^{2} \frac{\theta}{2} & 0 \\ -0 & \sec ^{2} \frac{\theta}{2}\end{array}\right]$
$=\frac{1}{\left(\sec ^{2} \frac{\theta}{2}\right)}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
So, $a=1, h=0$
and $13\left(a^{2}+b^{2}\right)=13$

Question: A missile fires a target. The probability of its getting intercepted is $\frac{1}{3}$ and if it is not intercepted then probability of hitting the target is $\frac{3}{4}$. Three independent missiles are fired. Find the probability of all three hit.

Answer: $\frac{1}{8}$

Solution:

Probability of missile not getting intercepted $=\frac{2}{3}$
Probability of missile hitting the target $=\frac{3}{4}$
\therefore Probability of all three missiles to hit target $=\left(\frac{2}{3} \times \frac{3}{4}\right) \times\left(\frac{2}{3} \times \frac{3}{4}\right) \times\left(\frac{2}{3} \times \frac{3}{4}\right)=\frac{1}{8}$

Question: $\sqrt{3} k x-y k+4 \sqrt{3}=0$ and $\sqrt{3} x+y-4 \sqrt{3} k=0$
The locus of point of intersection of these lines form a conic with eccentricity

Answer: 2.00

Solution:

$\sqrt{3} k x+k y=4 \sqrt{3}$
$\sqrt{3} k x-k y=4 \sqrt{3} k^{2}$
On adding (i) and (ii)
$2 \sqrt{3} k x=4 \sqrt{3}\left(k^{2}+1\right)$
$x=2\left(k+\frac{1}{k}\right)$
On subtracting (i) and (ii)
$2 k y=4 \sqrt{3}\left(1-k^{2}\right)$
$y=2 \sqrt{3}\left(\frac{1}{k}-k\right)$

$$
\begin{aligned}
& \therefore\left(\frac{x}{2}\right)^{2}-\left(\frac{y}{2 \sqrt{3}}\right)^{2}=\left(k+\frac{1}{k}\right)^{2}-\left(k-\frac{1}{k}\right)^{2}=4 \\
& \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{48}=1
\end{aligned}
$$

\therefore Eccentricity of Hyperbola
$\Rightarrow e^{2}=1+\frac{48}{16}=4$
$\therefore e=2$

